a2 United States Patent

Smith et al.

US009454413B1

US 9,454,413 B1
Sep. 27,2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(1)

(52)

(58)

SYSTEMS AND METHODS FOR HANDLING
COMMUNICATIONS BETWEEN NETWORK
APPLICATIONS

Applicants: Allyn D) Smith, Roseville, MN (US);
Steven R Hallquist, Roseville, MN
(US); William O Pollnow, Roseville,
MN (US)

Inventors: Allyn D Smith, Roseville, MN (US);
Steven R Hallquist, Roseville, MN
(US); William O Pollnow, Roseville,

MN (US)

Assignee: Unisys Corporation, Blue Bell, PA
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/823,390

Filed: Aug. 11, 2015

Int. CL.

GOG6F 13/00 (2006.01)

GOG6F 9/54 (2006.01)

U.S. CL

CPC oo GO6F 9/546 (2013.01)
Field of Classification Search

CPC GO6F 9/54; GOG6F 9/541, GOGF 9/547
USPC i 719/313, 319, 328, 330

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,926,636 A * 7/1999 Lam ... GOG6F 9/547
709/232

6,549,937 B1* 4/2003 Auerbach HO4L 12/581
709/206

8,190,675 B2* 5/2012 Tribbett GOG6F 9/541
709/203

2009/0016504 Al* 1/2009 Mantell HO4L 12/5835
379/101.01

2011/0239232 Al1* 9/2011 Sargentc....... GOG6F 9/54
719/328

* cited by examiner

Primary Examiner — Andy Ho
(74) Attorney, Agent, or Firm — Richard J. Gregson

(57) ABSTRACT

Systems and methods for improving the handing of com-
munications between network applications in a computer
system with connectivity services interfaces that seamlessly
handle the communications in an easy-to-use, secure, mes-
sage-oriented environment are disclosed. Embodiments of
systems and methods for maintaining ownership of sessions
by applications, and for avoiding the orphaning of commu-
nication sessions when activities are terminated are also
disclosed. Also disclosed are embodiments of systems and
methods for accessing data using authentication credentials
different than the authentication credentials associated with
a user that is requesting access to the data. Embodiments of
systems and methods for authenticating credentials for
establishing a secure communication connection between
applications executing on different platforms are also dis-
closed.

18 Claims, 11 Drawing Sheets

108
Internal
Network i
104
102a [26a ! \ Remate
Netwaork 114 | Application
Application \q | 108
. | AP
Sl Communications |
I Platform
102b
Network
Application
Communication Network
i2c 120b
Network » 5 le— Communications |
Application o i Platform |
/J : AP
11 I 110
Reimote
| Application
| 106

US 9,454,413 B1

Sheet 1 of 11

Sep. 27, 2016

U.S. Patent

901
uoneoyddy \
BT H
REM
Id¥

YIOMIT N UCHEHUMULIOT

Id¥ H
uciexnddy

B10We N H
h.w... 1

["DId

911

\.\

LU0 B
SUOHBIIUNLILIGT

uopeoyddy

TERaTRE=T I
SUGHEOIUTNILLIG)

=

vl

e
HICAMION

I

001

S0 PRI
4671 o1
uopeoyddy
RO
qz61
S0
uoneoyddy
SIOMION
BT BZO1

U.S. Patent

Sep. 27, 2016

Sheet 2 of 11

US 9,454,413 B1

Network
Application

PCEP
234:\\

23| Act## Act #2-n
230 ney
impersonate [250
4 A | N\
Listen Agccept Seqid msg Recv msg
A
212 216 218
220
Connectivity
Services
s Receive Act
219

Authentication

CPComm{0S)

g—p NET agent

U.S. Patent Sep. 27, 2016 Sheet 3 of 11 US 9,454,413 B1

START

ASSQOCIATING A FIRST SET OF APIs WITH A FIRST M\ 302
NETWORK APPLICATION EXECUTING IN A FIRST 08
PLATFORM

RECEIVING. VIA AT LEAST ONE API OF THE FIRST SET [& 304
OF APls, A MESSAGE FROM AN APIOF A SECOND SET

OF APIs ARSOCIATED WITH A SECOND NETWORK
APPLICATION EXECUTING IN A SECOND OGS PLATFORM

l

PACKAGING, USING AT LEAST ONE APLOF THE FIRST
SET OF APIS, THE RECEIVED MESSAGE

'

PROCESSING THE PACKAGED MESSAGE WITH THE [~ 308
FIRST NETWORK APPLICATION ON THE FIRST GS
PLATFORM

™\~ 306

FIG. 3

U.S. Patent Sep. 27, 2016 Sheet 4 of 11 US 9,454,413 B1

OBTAINING A COMMUNICATION SESSION TABLE M\ 402

:

DETERMINING IF AN ACTIVITY TABLE EXISTS M\ 404

l

DETERMINING, WHEN AN ACTIVITY TABLE IS M\ 406
DETERMINED TO EXIST, IF THE SESSION TABLE IS
LINKED TO THE ACTIVITY TABLE OR TO ANOTHER

ACTIVITY TABLE

'

LINKING THE SESSION TABLE TO THE ACTIVITY M\~ 408
TABLE WHEN THE ACTIVITY TABLE IS DETERMINED
TO EXIST, THE SESSION TABLE IS DETERMINED TO
NOT ALREADY BE LINKED TO THE ACTIVITY TABLE,

ACTIVITY TABLE

l

PERFORMING A COMPUTER INSTRUCTION REQUESTED
BY A USER ON THE COMMUNICATION SESSION
IDENTIFIED IN THE SESSION TABLE WHEN THE

ACTIVITY TABLE EXISTS AND THE SESSION TABLE IS
LINKED TO THE ACTIVITY TABLE

N 410

FI1G. 4

U.S. Patent Sep. 27, 2016 Sheet 5 of 11 US 9,454,413 B1

€S _LISTEN

USER ACTIVITY

l TABLE EXISTS?

CREATE ACTIVITY TABLE
THEN REGISTER ACTIVITY
FOR ACTIVITY
TERMINATION
NOTIFICATION

GET SESSIONTABLE FOR
LISTEN AND LINK IT TO
ACTIVITY TABLE SESSION
TABLE ARRAY

ESTABLISH LISTEN

RETURN TOUSER
APPLICATION

FIG. 4B

U.S. Patent Sep. 27, 2016 Sheet 6 of 11 US 9,454,413 B1

CS SEND. CS_RECEIVE,
¢S CLOSE, CS_ABORT

No USER ACTIVITY

TABLE EXISTS?

CREATE ACTIVITY TABLE
THEN REGISTER ACTIVITY
FOR ACTIVITY
TERMINATION
NOTIFICATION

SESSION
BELONGS TO
THIS
ACTIVITY?

MNo

;

STOP “UN-OWNED SESSION”
TIMER

¢ Yes

DELINK SESSION FROM
PREVICUS ACTIVITY

Y

LINK SESSION TO THE
CURRENT ACTIVITY TABLE
SESSION TABLE ARRAY

PERFOEM USER’S INTENDED
ACTION ON THE SESSION

!

RETURNTO USER
APPLICATION

FIG. 4C

U.S. Patent Sep. 27, 2016 Sheet 7 of 11 US 9,454,413 B1

500 N

M\~ 502
IDENTIFYING ONE OR MORE COMMUNICATION
SESSION TABLES LINKED TO AN ACTIVITY TABLE
DETECTING TERMINATION OF THE ACTIVITY TABLE [504

PRIOR TO THE ONE OR MORE SESSION TABLES
DETERMINED TO BE LINKED TO THE ACTIVITY TABLE
BEING LINKED TO OTHER ACTIVITY TABLES OR BEING

TERMINATED

DETERMINING WHETHER A FIRST SESSION TABLE OF [\~ 506
THE ONE OR MORE SESSION TABLES DETERMINED TO
BE LINKED TO THE TERMINATED ACTIVITY

CORRESPONDS TO A LISTEN SESSION OR A STANDARD
COMMUNICATION SESSION

'

ABORTING THE STANDARD COMMUNICATION M 508
SESSION, FREEING RESOURCES ALLOCATED TO THE
COMMUNICATION SESSION, AND REMOVING THE LINK.
BETWEEN THE FIRST SESSION TABLE AND THE
ACTIVITY TABLE WHEN THE FIRST SESSION TABLE IS
DETERMINED TO CORRESPOND TO A STANDARD
COMMUNICATION SESSION

FIG. 5

U.S. Patent

Sep. 27, 2016 Sheet 8 of 11

USER ACTIVITY
ABNORMALLY TERMINATES
PRIOR TO SESSION CLEANUFP

NUMBER OF

No SESSIONS

BELONGING TG

US 9,454,413 B1

ACTIVITY GREATER
THAN @7

[5 SESSICN A
LISTEN?Y

ABORT ALL SESSIONS
LINKED TO THE LISTEN,
FREE ANY ALLOCATED
SESKION REROURCES, CLOSE
LISTEN, AND REMOVE
LISTEN FROM ACTIVITY
TABLE

MORE

ABORT THE SESSION, FREE

ANY ALLOCATED SESSION

RESOQURCES AND EEMOVE

SESSION FROM ACTIVITY
TABLE

omame Yes
SESSIONS TG

TERMINATE?

- MARIK ACTIVITY TABLE AS
INACTIVE

Y

EXIT ACTIVITY

FIG. 5B

U.S. Patent Sep. 27, 2016 Sheet 9 of 11 US 9,454,413 B1

600
\ FIG. 6

AUTHENTICATING A FIRST SET OF AUTHENTICATION L g02
CREDENTIALS /\53%()(By, U EDWITH A FIRST U ‘§FR
DURING A FIRST CALL TO AN APL OF A FIRST SET OF
APls ASS()CEA’E'E}_) WITH A FIRST NETW URK
APPLICATION EXECUTING IN A FIRST O5 PLATFORM

:

STORING THE AUTHENTICATED FIRST SET OF
AUTHENTICATION CR}*DE\ TIALS ON THE FIRST OGS
PLATFORM

!

RECEIVING, VIA AT LEAST ONE API OF THE FIRST SET [\~ 606
OF AFIS, FROM AN APHOF A SECOND SEE OF APIs
ASSOCIATED WITH A SECOND NETWORK
APPLICATION EXECUTING IN A SECOND OS5
PLATFORM, A REQUEST TO A(f(_vlf.bf) DATA DURING A
COMMUNICATION SESSION
RETRIEVING THE STORED AUTHENTICATED FIRST SET I~ g08

OF AUTHENTICATION CREDENTIALS

'

CONVERTING THE AUTHENTICATION CREDENTIALS gip
ASSOCIATED WITH THE REQUEST FROM THE SECOND
SET OF AUTHENTICATION CREDENTIALS TO THE FIRST
SET OF AUTHENTICATION CREDENTIALS

N\ 604

Y

ACCESSING THE DATA USING THE AUTHENTICATED
FIRST SET OF AUTHENTICATION CREDENTIALS

N\-612

U.S. Patent Sep. 27, 2016 Sheet 10 of 11 US 9,454,413 B1

760

START

RECEIVING A FIRST SET OF AUTHENTICATION M\ 702
CREDENTIALS, WHEREIN THE FIRST SET OF
AUTHENTICATION CREDENTIALS COMPRISE
CREDENTIALS FOR ACCESSING DATA ON A FIRST 08
PLATFORM

:

SELECTING A FIRST AUTHENTICATION PROCESS FROM [V 704
AT LEAST TWO AUTHENTICATION PROCESSES TO
PROCESS THE FIRST SET OF AUTHENTICATION
CREDENTIALS WHEN THE RECEIVED FIRST SET OF
AUTHENTICATION CREDENTIALS COMPRISES AN
ENCRYPTED USER ID AND PASSWORD

l

WHEREIN PROCESSING IN ACCORDANCE WITH THE
SELECTED FIRST AUTHENTICATION PROCESS
COMPRISES DECRYPTING THE ENCRYPTED USER 1D
AND PASSWORD, AUTHENTICATING THE DECRYPTED
USER 1D AND PASSWORD WITH AN ASIS EXHCUTING
ON THE FIRST OS PLATFORM, AND STORING THE
AUTHENTICATED USER ID

M\ 706

FIG. 7

U.S. Patent Sep. 27, 2016 Sheet 11 of 11 US 9,454,413 B1

8(}0\‘ P
N
Data Storage

Communications
Adapter

Cru ROM RAM 10 Adapter

User nterface Display
Adapter Adapter

FIG. 8

US 9,454,413 Bl

1
SYSTEMS AND METHODS FOR HANDLING
COMMUNICATIONS BETWEEN NETWORK
APPLICATIONS

FIELD OF THE DISCLOSURE

The instant disclosure relates generally to computer sys-
tems. More specifically, this disclosure relates to the han-
dling of communication between network applications in a
computer system by connectivity services interfaces in the
computer system.

BACKGROUND

Communication between network interfaces entails
numerous issues. For example, when network applications
execute on different operating system (OS) platforms,
accessing services of a first OS platform via a first network
application executing in the first OS platform from a second
network application executing in a second OS platform can
be a complex process that consumes a significant amount of
time and computing resources and results in user frustration.
In addition, some services, such as those requiring high
levels of security or user authentication, may not be avail-
able from remote network applications. Current connectivity
services tasked with handling the communication between
network interfaces in computer systems suffer from the
foregoing drawbacks and numerous others, thus making
them less-than-optimal solutions for computer system con-
sumers.

SUMMARY

The handling of communications between network appli-
cations in a computer system may be improved with con-
nectivity services interfaces that seamlessly handle the com-
munications in an easy-to-use, secure, message-oriented
environment. According to one embodiment, a method for
handling communications between network applications
may include associating, by a processor, a first set of
application interfaces (APIs) with a first network application
executing in a first operating system (OS) platform. The
method may also include receiving, by the processor, via at
least one API of the first set of APIs, a message from an API
of a second set of APIs associated with a second network
application executing in a second OS platform. The method
may further include packaging, by the processor, using at
least one API of the first set of APIs, the received message,
wherein packaging comprises converting the message from
a format configured for use by the second network applica-
tion on the second OS platform to a format for use by the
first network application on the first OS platform. The
method may also include processing, by the processor, the
packaged message with the first network application on the
first OS platform.

According to another embodiment, a computer program
product may include a non-transitory computer-readable
medium including instructions which, when executed by a
processor of a computing system, cause the processor to
perform the step of associating a first set of application
interfaces (APIs) with a first network application executing
in a first operating system (OS) platform. The medium may
also include instructions which cause the processor to per-
form the step of receiving via at least one API of the first set
of APIs, a message from an API of a second set of APIs
associated with a second network application executing in a
second OS platform. The medium may further include

20

30

40

45

55

2

instructions which cause the processor to perform the step of
packaging using at least one API of the first set of APIs, the
received message, wherein packaging comprises converting
the message from a format configured for use by the second
network application on the second OS platform to a format
for use by the first network application on the first OS
platform. The medium may also include instructions which
cause the processor to perform the step of processing the
packaged message with the first network application on the
first OS platform.

According to yet another embodiment, an apparatus may
include a memory and a processor coupled to the memory.
The processor may be configured to execute the step of
associating a first set of application interfaces (APIs) with a
first network application executing in a first operating sys-
tem (OS) platform. The processor may also be configured to
perform the step of receiving via at least one API of the first
set of APIs, a message from an API of a second set of APIs
associated with a second network application executing in a
second OS platform. The processor may be further config-
ured to perform the step of packaging using at least one API
of the first set of APIs, the received message, wherein
packaging comprises converting the message from a format
configured for use by the second network application on the
second OS platform to a format for use by the first network
application on the first OS platform. The processor may also
be configured to perform the step of processing the packaged
message with the first network application on the first OS
platform.

According to one embodiment, a method for maintaining
ownership of sessions by applications may include obtain-
ing, by a processor, a communication session table, wherein
the communication session table comprises a data structure
with information used to establish and maintain a commu-
nication session between network applications. The method
may also include determining, by the processor, if an activity
table exists, wherein an activity table comprises a list of
operations scheduled for execution. The method may further
include determining, by the processor, when an activity table
is determined to exist, if the session table is linked to the
activity table or to another activity table. The method may
also include linking, by the processor, the session table to the
activity table when the activity table is determined to exist,
the session table is determined to not already be linked to the
activity table, and the session table is referenced by the
activity table. The method may further include performing,
by the processor, a computer instruction requested by a user
on the communication session identified in the session table
when the activity table exists and the session table is linked
to the activity table.

According to another embodiment, a computer program
product may include a non-transitory computer-readable
medium including instructions which, when executed by a
processor of a computing system, cause the processor to
perform the step of obtaining a communication session
table, wherein the communication session table comprises a
data structure with information used to establish and main-
tain a communication session between network applications.
The medium may also include instructions which cause the
processor to perform the step of determining if an activity
table exists, wherein an activity table comprises a list of
operations scheduled for execution. The medium may fur-
ther include instructions which cause the processor to per-
form the step of determining when an activity table is
determined to exist, if the session table is linked to the
activity table or to another activity table. The medium may
also include instructions which cause the processor to per-

US 9,454,413 Bl

3

form the step of linking the session table to the activity table
when the activity table is determined to exist, the session
table is determined to not already be linked to the activity
table, and the session table is referenced by the activity table.
The medium may also include instructions which cause the
processor to perform the step of performing a computer
instruction requested by a user on the communication ses-
sion identified in the session table when the activity table
exists and the session table is linked to the activity table.

According to yet another embodiment, an apparatus may
include a memory and a processor coupled to the memory.
The processor may be configured to execute the step of
obtaining a communication session table, wherein the com-
munication session table comprises a data structure with
information used to establish and maintain a communication
session between network applications. The processor may
also be configured to perform the step of determining if an
activity table exists, wherein an activity table comprises a
list of operations scheduled for execution. The processor
may be further configured to perform the step of determining
when an activity table is determined to exist, if the session
table is linked to the activity table or to another activity
table. The processor may also be configured to perform the
step of linking the session table to the activity table when the
activity table is determined to exist, the session table is
determined to not already be linked to the activity table, and
the session table is referenced by the activity table. The
processor may be further configured to perform the step of
performing a computer instruction requested by a user on the
communication session identified in the session table when
the activity table exists and the session table is linked to the
activity table.

According to one embodiment, a method for avoiding the
orphaning of communication sessions when activities are
terminated may include identifying, by the processor, one or
more communication session tables linked to an activity
table. The method may also include detecting, by the pro-
cessor, termination of the activity table prior to the one or
more session tables determined to be linked to the activity
table being linked to other activity tables or being termi-
nated. The method may further include determining, by the
processor, whether a first session table of the one or more
session tables determined to be linked to the terminated
activity corresponds to a listen session or a standard com-
munication session. The method may also include aborting
the standard communication session, freeing resources allo-
cated to the communication session, and removing the link
between the first session table and the activity table when the
first session table is determined to correspond a standard
communication session.

According to another embodiment, a computer program
product may include a non-transitory computer-readable
medium including instructions which, when executed by a
processor of a computing system, cause the processor to
perform the step of identifying one or more communication
session tables linked to an activity table. The medium may
also include instructions which cause the processor to per-
form the step of detecting termination of the activity table
prior to the one or more session tables determined to be
linked to the activity table being linked to other activity
tables or being terminated. The medium may further include
instructions which cause the processor to perform the step of
determining whether a first session table of the one or more
session tables determined to be linked to the terminated
activity corresponds to a listen session or a standard com-
munication session. The medium may also include instruc-
tions which cause the processor to perform the step of

25

30

35

40

45

50

4

aborting the standard communication session, freeing
resources allocated to the communication session, and
removing the link between the first session table and the
activity table when the first session table is determined to
correspond a standard communication session.

According to yet another embodiment, an apparatus may
include a memory and a processor coupled to the memory.
The processor may be configured to execute the step of
identifying one or more communication session tables
linked to an activity table. The processor may also be
configured to perform the step of detecting termination of
the activity table prior to the one or more session tables
determined to be linked to the activity table being linked to
other activity tables or being terminated. The processor may
be further configured to perform the step of determining
whether a first session table of the one or more session tables
determined to be linked to the terminated activity corre-
sponds to a listen session or a standard communication
session. The processor may also be configured to perform
the step of aborting the standard communication session,
freeing resources allocated to the communication session,
and removing the link between the first session table and the
activity table when the first session table is determined to
correspond a standard communication session.

According to one embodiment, a method for accessing
data using authentication credentials different than the
authentication credentials associated with a user that is
requesting access to the data may include authenticating, by
a processor, a first set of authentication credentials associ-
ated with a first user during a first call to an application
interface (API) of a first set of APIs associated with a first
network application executing in a first operating system
(OS) platform. The method may also include storing, by the
processor, the authenticated first set of authentication cre-
dentials on the first OS platform. The method may further
include receiving, by the processor, via at least one API of
the first set of APIs, from an API of a second set of APIs
associated with a second network application executing in a
second OS platform, a request to access data during a
communication session, wherein a second set of authenti-
cation credentials associated with a second user are associ-
ated with the received request. The method may also include
retrieving, by the processor, the stored authenticated first set
of authentication credentials. The method may further
include converting, by the processor, the authentication
credentials associated with the request from the second set
of authentication credentials to the first set of authentication
credentials. The method may also include accessing, by the
processor, the data using the authenticated first set of authen-
tication credentials.

According to another embodiment, a computer program
product may include a non-transitory computer-readable
medium including instructions which, when executed by a
processor of a computing system, cause the processor to
perform the step of authenticating a first set of authentication
credentials associated with a first user during a first call to
an application interface (API) of a first set of APIs associated
with a first network application executing in a first operating
system (OS) platform. The medium may also include
instructions which cause the processor to perform the step of
storing the authenticated first set of authentication creden-
tials on the first OS platform. The medium may further
include instructions which cause the processor to perform
the step of receiving via at least one API of the first set of
APIs, from an API of a second set of APIs associated with
a second network application executing in a second OS
platform, a request to access data during a communication

US 9,454,413 Bl

5

session, wherein a second set of authentication credentials
associated with a second user are associated with the
received request. The medium may also include instructions
which cause the processor to perform the step of retrieving
the stored authenticated first set of authentication creden-
tials. The medium may further include instructions which
cause the processor to perform the step of converting the
authentication credentials associated with the request from
the second set of authentication credentials to the first set of
authentication credentials. The medium may also include
instructions which cause the processor to perform the step of
accessing the data using the authenticated first set of authen-
tication credentials.

According to yet another embodiment, an apparatus may
include a memory and a processor coupled to the memory.
The processor may be configured to execute the step of
authenticating a first set of authentication credentials asso-
ciated with a first user during a first call to an application
interface (API) of a first set of APIs associated with a first
network application executing in a first operating system
(OS) platform. The processor may also be configured to
perform the step of storing the authenticated first set of
authentication credentials on the first OS platform. The
processor may be further configured to perform the step of
receiving via at least one API of the first set of APIs, from
an API of a second set of APIs associated with a second
network application executing in a second OS platform, a
request to access data during a communication session,
wherein a second set of authentication credentials associated
with a second user are associated with the received request.
The processor may also be configured to perform the step of
retrieving the stored authenticated first set of authentication
credentials. The processor may be further configured to
perform the step of converting the authentication credentials
associated with the request from the second set of authen-
tication credentials to the first set of authentication creden-
tials. The processor may also be configured to perform the
step of accessing the data using the authenticated first set of
authentication credentials.

According to one embodiment, a method for authenticat-
ing credentials for establishing a secure communication
connection between applications executing on different plat-
forms may include receiving, by a processor, a first set of
authentication credentials, wherein the first set of authenti-
cation credentials comprise credentials for accessing data on
a first operation system (OS) platform, and wherein the first
set of authentication credentials comprise either an
encrypted user identification (ID) and password or first
packaged data generated by a first interface executing on a
second OS platform. The method may also include selecting,
by the processor, a first authentication process from at least
two authentication processes to process the first set of
authentication credentials when the received first set of
authentication credentials comprises an encrypted user 1D
and password. Processing, by the processor, the first set of
authentication credentials in accordance with the selected
first authentication process may include: decrypting the
encrypted user ID and password; authenticating the
decrypted user ID and password with an authentication and
session initiation subsystem (ASIS) executing on the first
OS platform; and storing the authenticated user ID.

According to another embodiment, a computer program
product may include a non-transitory computer-readable
medium including instructions which, when executed by a
processor of a computing system, cause the processor to
perform the step of receiving a first set of authentication
credentials, wherein the first set of authentication credentials

10

15

20

25

30

35

40

45

50

55

60

65

6

comprise credentials for accessing data on a first operation
system (OS) platform, and wherein the first set of authen-
tication credentials comprise either an encrypted user iden-
tification (ID) and password or first packaged data generated
by a first interface executing on a second OS platform. The
medium may also include instructions which cause the
processor to perform the step of selecting a first authenti-
cation process from at least two authentication processes to
process the first set of authentication credentials when the
received first set of authentication credentials comprises an
encrypted user ID and password, wherein processing the
first set of authentication credentials in accordance with the
selected first authentication process includes: decrypting the
encrypted user ID and password; authenticating the
decrypted user ID and password with an authentication and
session initiation subsystem (ASIS) executing on the first
OS platform; and storing the authenticated user ID.

According to yet another embodiment, an apparatus may
include a memory and a processor coupled to the memory.
The processor may be configured to execute the step of
receiving a first set of authentication credentials, wherein the
first set of authentication credentials comprise credentials
for accessing data on a first operation system (OS) platform,
and wherein the first set of authentication credentials com-
prise either an encrypted user identification (ID) and pass-
word or first packaged data generated by a first interface
executing on a second OS platform. The processor may also
be configured to perform the step of selecting a first authen-
tication process from at least two authentication processes to
process the first set of authentication credentials when the
received first set of authentication credentials comprises an
encrypted user ID and password, wherein processing the
first set of authentication credentials in accordance with the
selected first authentication process includes: decrypting the
encrypted user ID and password; authenticating the
decrypted user ID and password with an authentication and
session initiation subsystem (ASIS) executing on the first
OS platform; and storing the authenticated user ID.

The foregoing has outlined rather broadly the features and
technical advantages of the present invention in order that
the detailed description of the invention that follows may be
better understood. Additional features and advantages of the
invention will be described hereinafter that form the subject
of the claims of the invention. It should be appreciated by
those skilled in the art that the concepts and specific embodi-
ments disclosed may be readily utilized as a basis for
modifying or designing other structures for carrying out the
same purposes of the present invention. It should also be
realized by those skilled in the art that such equivalent
constructions do not depart from the spirit and scope of the
invention as set forth in the appended claims. The novel
features that are believed to be characteristic of the inven-
tion, both as to its organization and method of operation,
together with further objects and advantages will be better
understood from the following description when considered
in connection with the accompanying figures. It is to be
expressly understood, however, that each of the figures is
provided for the purpose of illustration and description only
and is not intended as a definition of the limits of the present
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the disclosed
systems and methods, reference is now made to the follow-
ing descriptions taken in conjunction with the accompanying
drawings.

US 9,454,413 Bl

7

FIG. 1 is a schematic block diagram illustrating a com-
puting system including connectivity services (CS) inter-
faces that handle communications between network appli-
cations according to one embodiment of the disclosure.

FIG. 2 is a schematic block diagram illustrating interac-
tion between a network application and connectivity ser-
vices interfaces according to one embodiment of the disclo-
sure.

FIG. 3 is a flow chart illustrating a method for handling
communications between network applications according to
one embodiment of the disclosure.

FIG. 4 is a flow chart illustrating a method for maintaining
ownership of sessions by applications according to one
embodiment of the disclosure.

FIG. 4B is a flow chart illustrating process flows which
may be implemented as part of a method for maintaining
ownership of sessions by applications according to one
embodiment of the disclosure.

FIG. 4C is another flow chart illustrating process flows
which may be implemented as part of a method for main-
taining ownership of sessions by applications according to
one embodiment of the disclosure.

FIG. 5 is a flow chart illustrating a method for avoiding
the orphaning of communication sessions when activities are
terminated according to one embodiment of the disclosure.

FIG. 5B is a flow chart illustrating process flows which
may be implemented as part of a method for avoiding the
orphaning of communication sessions when activities are
terminated according to one embodiment of the disclosure.

FIG. 6 is a flow chart illustrating a method for accessing
data using authentication credentials different than the
authentication credentials associated with a user that is
requesting access to the data according to one embodiment
of the disclosure.

FIG. 7 is a flow chart illustrating a method for authenti-
cating credentials for establishing a secure communication
connection between applications executing on different plat-
forms according to one embodiment of the disclosure.

FIG. 8 is a block diagram illustrating a computer system
according to one embodiment of the disclosure.

DETAILED DESCRIPTION

As used in this description, the terms “component.”
“database,” “module,” “system,” and the like are intended to
refer to a computer-related entity, either hardware, firmware,
a combination of hardware and software, software, or soft-
ware in execution. For example, a component may be, but is
not limited to being, a process running on a processor, a
processor, an object, an executable, a thread of execution, a
program, and/or a computer. By way of illustration, both an
application running on a computing device and the comput-
ing device may be a component. One or more components
may reside within a process and/or thread of execution, and
a component may be localized on one computer and/or
distributed between two or more computers. In addition,
these components may execute from various computer read-
able media having various data structures stored thereon.
The components may communicate by way of local and/or
remote processes such as in accordance with a signal having
one or more data packets (e.g., data from one component
interacting with another component in a local system, dis-
tributed system, and/or across a network such as the Internet
with other systems by way of the signal).

FIG. 1 is a schematic block diagram illustrating a com-
puting system including CSs that handle communications
between network applications according to one embodiment

10

15

20

25

30

35

40

45

50

55

60

65

8

of the disclosure. The computing system 100 includes net-
work applications 102a-102¢ executing in a first OS plat-
form, remote network applications 104 and 106. APIs 108
and 110, a communication network 112, communications
platforms 114 and 116, and CSs 120a4-1205. A network
application executing in an OS platform may include a
network application executing on a computer managed by
the OS or a network application executing on a server
managed by the OS or both. Accordingly, in one embodi-
ment, network application 102a¢ may execute on a computer
managed by a specific OS, network application 1025 may
execute on a server managed by the OS, and network
application 102¢ may execute on a combination of comput-
ers and server managed by the OS.

A remote application 104 or 106 may refer to a network
application executing outside an internal computing net-
work. For example, as shown in the embodiment of FIG. 1,
the network applications 102a-102¢ may execute on com-
puting systems within the internal network, while remote
applications 104 and 106 may execute on computing system
not within the internal network. In some embodiments,
remote applications 104 and 106 may be located at geo-
graphic locations different than the geographic location of
one or more of the network applications 102a-102¢. For
example, in another embodiment, one or more of the remote
applications 104 and 106 may execute in the same OS
platform as network applications 102a-102¢, but on different
computing systems than those on which the network appli-
cations 102a-102¢ execute, such as computing systems
outside the internal network and/or computing systems
located at geographically different locations than the com-
puting systems on which the network applications 102a-
102¢ execute. In another embodiment, a remote application
104 or 106 may refer to a network application managed by
an OS platform different than the OS platform managing the
network applications 102a-102¢ but geographically located
at the same location as the network applications 102a-102¢
and/or within the internal network in which the network
applications 102a-102¢ execute.

As shown in the embodiment of FIG. 1, communication
between remote network applications 104 and 106 and a
network application 1024-102¢ may be effectuated via
numerous components. For example, remote applications
104 and 106 may be associated with application interfaces
(APIs) 108 and 110 that enable the remote applications 104
and 106 to access a communication network 112 through
which the remote applications 104 and 106 may communi-
cate with network applications 102a-102¢. An API 108 or
110 may be a combination of hardware and/or software
configured to implement the functions that effectuate com-
munication between a network application, whether local or
remote, and other components of the computer system 100.
In some embodiments, an API 108 or 110 may also include
remote calls which may be called (executed) to cause one or
more subroutines or procedures to execute in an address
space.

The communication network 112 may facilitate commu-
nications of data between the network applications, such as
between remote network applications 104 and 106 and
network applications 102a-102¢. The communication net-
work 112 may include any type of communications network,
such as a direct PC-to-PC connection, a local area network
(LAN), a wide area network (WAN), a modem-to-modem
connection, the Internet, a combination of the above, or any
other communications network now known or later devel-
oped within the networking arts which permits two or more
computers to communicate.

US 9,454,413 Bl

9

The Communications Platforms 114 and 116 may include
a combination of hardware and/or software configured to
connect network application programs, such as network
applications 102a-102¢ with terminals, workstations, and
other applications in a data communications network, such
as remote applications 104 and 106. For example, some of
the functionality which a communications platform may
provide includes implementation of communication proto-
col stacks. In some embodiments, the communications plat-
forms 114 and 116 may include network interface cards
(NICs) to effectuate access to the communication network
112. The communications platforms 114 and 116 may also
be configured to support open communication standards.
Accordingly, network applications 1024-102¢ may access
the communications platform 114 or 116 to connect to the
network and ultimately communicate with remote applica-
tions 104 or 106.

The computing system 100 also includes CSs 1204-1025
that handle the communications between the network appli-
cations 102a-102¢ and network applications 104 and 106. In
other words, a CS may serve as the interface between a
network application executing in one OS platform and a
network application executing in another OS platform. In
some embodiments, CSs 120a-120¢ may, on behalf of a
network application 102a-102¢, provide message-oriented
communication, authentication of remote users, security,
and impersonation of an authenticated user wherein a net-
work application 102a-102¢ may be granted access to data
assets associated with the authenticated user being imper-
sonated. Security for a CS may be provided in various ways,
such as by encryption and decryption of data in transit, i.e.,
being transferred, and/or by way of “hacker frustration” in
which only a limited number of invalid remote connect
attempts are allowed from a specific remote location before
denying access to CS from that remote location for a period
of time. In one embodiment, access may be denied by a CS
1204-1205 until an administrator overrides the denial and
allows access.

In some embodiments, a network application 102a-102¢
may initiate CS interaction by sending a message to a CS
120 requesting communication with a remote application
104 or 106, such as for the transfer of data to and from a
remote application 104 or 106 and the network application
102a-102¢. The CS 120 may receive the message, package
it into a proper message format, and then call a communi-
cations platform 114 or 116 to send the message to its
destination. In another embodiment, a CS 120 may receive
a message from the network, package the message, and then
transfer the message to the appropriate network application
102a-102c.

In some embodiments, CSs 120a-1205 may provide a
message-oriented service by packaging application data
within a CS protocol frame. For example, the CSs 120a-
12056 may send data as a CS protocol frame through a
communications platform 114 or 116. In one embodiment,
when receiving data from remote applications 104 or 106, a
CS 120 may receive a message, reassemble a CS protocol
frame, and then pass the data from the frame to a receiving
application as a pointer to a queue bank. By sending the data
as a pointer to a queue bank, a CS 120 may avoid creating
data copies in user memory when sending the data.

According to another embodiment, the CSs 120a-1205
may provide authentication services through standard Indus-
try logon procedures. The CSs 120a-1205 may also provide
secure data transmission, such as, for example, providing
SSL/TLS services for data in transit.

10

15

20

25

30

35

40

45

50

55

60

65

10

The CSs 1204-12056 may be configured to perform many
functions, but in some embodiments the CSs 1204-1205
may perform a handful of functions more than others. One
such function is a main logging function which may load the
CS, a fixed gate shared subsystem (FGSS), initialize sub-
system data, and identify subordinating functions to per-
form. The main logging function may also handle all logging
requests from the CS 120. The CSs 120a-1205 may also be
configured to perform keyin/user-command functions,
which may include the handling of commands to the CS 120.
The CSs 1204-1205 may also be configured to perform
timing functions, such as for managing a timer for timed
events. The CSs 1204-1205 may be further configured to
perform communications input receive activity to handle
inputs from the communications platforms 114 or 116. In
addition, the CSs 120a4-1205 may be configured to perform
master functions, which may include the handling of authen-
tication processing.

In some embodiments, a remote network application 104
or 106 may operate under the same OS platform and/or
perform similar functions as a network application 102. In
addition, in some embodiments a remote network applica-
tion 104 or 106 may interact with other network applications
in a similar manner that a network application 102 interacts
with other network applications. For example, an API 108 or
110 may include a CS and/or a communications platform so
as to handle communication to and from a remote applica-
tion in the same manner that CS 120 and communications
platform 114 or 116 handles communication to and from
network applications 102.

FIG. 2 is a schematic block diagram illustrating interac-
tion between a network application and connectivity ser-
vices interfaces according to one embodiment of the disclo-
sure. As illustrated in the embodiment of FIG. 2, a CS 210
may include a Listen interface 212, an Accept interface 214,
a Send interface 216, and a Receive interface 218. The
interfaces illustrated in FIG. 2 are not exhaustive of the
countless interfaces provided within a CS, thus the inter-
faces illustrated in FIG. 2 serve as a subset of the interfaces
available within a CS.

The interfaces provided within a CS 210 may serve as the
entry points through which a network application, such as
network application 230, accesses the CS 210. In particular,
network application 230 may access CS 210 by calling an
interface provided by CS 210. When network application
230 calls an interface of CS 210, the parameters used for
each procedure requested to be executed may be presented
to the computing system on which the network application
230 and CS 210 execute in the same order in which the
parameters appear in the call to the interface of CS 210. In
some embodiments, the network application 230 may pass
pointers to the parameters to the CS 210, and the CS 210
may return values to the network application 230 based on
use of the pointers.

In some embodiments, the first parameter passed by a
network application 230 to an interface of the CS 210 may
be pointer to a data packet, which may be a data structure
through which a calling program of the network application
230 specifies most options that apply to the functions of the
interface being called. According to an embodiment, the data
packet may serve as both an input parameter and an output
parameter. For example, in one embodiment, the data packet
may include data used as input by a CS 210 or network
application 230. In another embodiment, the data packet
may include data output by a CS 210 or network application
230.

US 9,454,413 Bl

11

In the embodiment of FIG. 2, the first action 232 the
network application 230 may take to begin utilization of the
CS 210 is to call a Listen interface 212 of the CS 210. When
the CS 210 receives the call to the Listen interface 212, the
CS 210 may register an activity table associated with the call
to the Listen interface 212 if the activity table has not
already been registered. In some embodiments, if the sub-
routines associated with Listen interface 212 execute suc-
cessfully, then the CS 210 and a communications platform
240 may be ready to receive inbound network connection
requests on behalf of the network application 210. If the
subroutines associated with the Listen interface 212 do not
execute successfully, then the CS 210 may return a fail status
to the network application 230. In response to the call to the
Listen interface 212, the CS 210 may return to the network
application 230 an identifier which identifies the remote
network application seeking communication with the net-
work application 230.

When the CS 210 receives a message from the commu-
nications platform 240 indicating a request from a remote
network application for a communication connection with
the network application 230, the CS 210 may create a
session table for that connection so that subsequent input
events and network application requests from the remote
network application may be directed to the appropriate
communications platform 240 and network application 210
communication session. In some embodiments, a session
table may store the state of a connection, information
specifying whether or not the connection implements certain
security measures, information specifying whether the con-
nection is a message-oriented connection or a byte-stream
oriented connection, and generally any information which
can be used to establish a communication session between
network applications. In some embodiments, a session table
identifier may be passed to the network application 230 in
response to a call by the network application 230 to the
Accept interface 214 of the CS 210.

According to an embodiment, when a session table has
been created, the CS 210 may enter a Wait state 220 until
authentication credentials are received from a remote net-
work application via the communications platform 240.
When the credentials are received, the CS 210 may initiate
an authentication process 222. In some embodiments, the
authentication process 222 may be initiated based on an
authentication type specified in the received connection data
frame. In one embodiment, if the exchange of the connect
frame or the authentication fails, the CS 210 may abort the
connection and release an associated session table.

Authentication processing performed by a computing
system via an authentication module 222 may vary based on
the type of authentication credentials provided. For example,
in one embodiment, the credentials passed by the remote
network application may be a user identification (ID) and
password used for accessing data assets on an OS platform
on which the network application 230 executes. In another
embodiment, the credentials may be a user identification
(ID) and password used for accessing data assets on an OS
platform on which the remote network application 230
executes.

In some embodiments, after the network application 230
has called a Listen interface 212 of a CS 210 and the Listen
interface 212 functions execute successfully, the network
application 230 may call an Accept Interface 214. As illus-
trated in the embodiment of FIG. 2, the call to the Accept
interface 214 may be part of a first action 232 performed by
the network application 230. In another embodiment, the
call may be a separate action. After the Accept interface 214

10

15

20

25

30

35

40

45

50

55

60

65

12

has been called, the CS 210 may enter a Wait state 220. In
some embodiments, the CS 210 may stay in the Wait state
220 until it receives a communication from a remote net-
work application via the communications platform 240
requesting communication with the network application
230. In some embodiments, the CS 210 may remain in the
Wait state 220 even after receiving a communication request
from a remote network application until the authentication
credentials provided with the communication request are
authenticated via the authentication processing module 222.
After the Accept interface 214 has been called, the CS may
return to the network application 230 a session 1D, a security
handle, and/or a user ID.

In some embodiments, the network application 230 may
call the Send interface 216 to send data to a remote network
application. In one embodiment, the data may be sent using
a queue bank. According to an embodiment, the data may be
included as part of a single message between the network
application 230 and the remote network application, and the
CS 210 may convert the message request into a send data
request sent to the communications platform 240 which may
then send the message to the receiving remote network
application. In some embodiments, the network application
230 may call the Receive interface 218 to obtain data from
the remote network application.

In some embodiments, the CS 210 may also include an
Impersonate interface 250. For example, in some embodi-
ments, after the functions associated with an Accept inter-
face 214 have executed successfully, the network applica-
tion 230 may change the authentication credentials
associated with operations being initiated or executed by the
network application 230 on the first OS platform. In some
embodiments, the user currently accessing the network
application 230 may be different than the user that initiated
the call to the Accept interface 214, but the network appli-
cation 230 may need the authentication credentials associ-
ated with the user that initiated the call to the Accept
interface 214 to perform some operations on the OS plat-
form on which it executes. By issuing a call to the Imper-
sonate interface 250, the network application 230 may cause
the CS 210 to switch the authentication credentials from the
current user accessing the network application 230 from the
remote network application to the authentication credentials
associated with the original user that initiated the call to the
Accept interface 214. In some embodiments, the original
user’s authentication credentials may have been stored in
memory associated with the computing system on which the
CS 210 and the network application 230 execute, and
therefore the original user’s authentication credentials may
be retrieved from the location in memory. In other words, the
authentication process may not need to be replicated to
switch between authentication credentials after the authen-
tication credentials have already been authenticated.

In some embodiments, after the network application 230
has finished performing operations that require the original
user’s authentication credentials, the network application
230 may call another interface, such as an End Impersonate
interface (not shown), to return the authentication creden-
tials associated with operations executed by the network
application 230 from the original user’s authentication cre-
dentials (the user that initiated the call to the Accept inter-
face 214) to the authentication credentials associated with
the user currently accessing the network application 230
from a remote application.

In view of exemplary systems shown and described
herein, methodologies that may be implemented in accor-
dance with the disclosed subject matter will be better

US 9,454,413 Bl

13

appreciated with reference to various functional block dia-
grams. While, for purposes of simplicity of explanation,
methodologies are shown and described as a series of
acts/blocks, it is to be understood and appreciated that the
claimed subject matter is not limited by the number or order
of blocks, as some blocks may occur in different orders
and/or at substantially the same time with other blocks from
what is depicted and described herein. Moreover, not all
illustrated blocks may be required to implement methodolo-
gies described herein. It is to be appreciated that function-
ality associated with blocks may be implemented by various
aspects of the systems disclosed herein.

FIG. 3 is a flow chart illustrating a method for handling
communications between network applications according to
one embodiment of the disclosure. It is noted that embodi-
ments of method 300 may be implemented in accordance
with the systems and embodiments described herein with
respect to FIGS. 1-2 and FIG. 8. For example, embodiments
of method 300 may be implemented by a computing system
that includes at least a network application, a CS, and a
communications platform as illustrated in FIGS. 1-2. In
some embodiments, the computing system may be a pro-
cessor, a server, or a combination of processors and servers,
such as a network of processors and servers, and may
include one or more components illustrated in FIGS. 1-2 and
FIG. 8. In general, embodiments of method 300 may be
implemented by other similar systems without deviating
from this disclosure so long as the systems, whether directly
or indirectly, support the operations as described herein.

Specifically, method 300 includes, at block 302, associ-
ating, by a processor, a first set of APIs with a first network
application executing in a first OS platform. In some
embodiments, the first set of APIs associated with the first
network application may include a CS, such as, for example,
CS 120 illustrated in FIG. 1 or CS 210 illustrated in FIG. 2.
According to some embodiments, associating the first set of
APIs with a first network application may include calling a
first API of the first set of APIs to establish a relationship
between the first set of APIs and the first network application
and to indicate to a communications platform that the first
set of APIs are ready to process inbound network connection
requests for the first network application. For example, in
one embodiment, a computing system may call a Listen
interface of a CS, such as Listen interface 212 of CS 210
illustrated in FIG. 2, to establish a relationship between the
first set of APIs and the first network application and to
indicate to a communications platform that the first set of
APIs are ready to process inbound network connection
requests for the first network application.

At block 304, method 300 includes receiving, by the
processor, via at least one API of the first set of APIs, a
message from an API of a second set of APIs associated with
a second network application executing in a second OS
platform. For example, an API of a CS may receive a
message from an API of a set of APIs associated with a
remote application. In some embodiments, the received
message may include at least one instruction to be processed
by the first network application executing on the first OS
platform. For example, in one embodiment, the instruction
may be an instruction specifying a particular data asset to be
retrieved from a computing system managed by the first OS
platform. According to certain embodiments, the at least one
instruction may have been input by a user using at least one
API associated with the second network application execut-
ing on the second OS platform, such as a user interface.

Method 300 includes, at block 306, packaging, by the
processor, using at least one API of the first set of APIs, the

10

15

20

25

30

35

40

45

50

55

60

65

14

received message, wherein packaging includes converting
the message from a format configured for use by the second
network application on the second OS platform to a format
for use by the first network application on the first OS
platform. At block 308, method 300 includes processing, by
the processor, the packaged message with the first network
application on the first OS platform. For example, as noted
with respect to the embodiment of FIG. 1, a CS 120 may
receive a message from the network, such as from a remote
network application, package the message, and then transfer
the message to the appropriate network application 102a-
102¢ for processing.

In another embodiment, the processor implementing the
CS functions may package, using at least one API of the first
set of APIs, data on the first OS platform obtained with the
first network application, wherein packaging includes con-
verting the data from a format configured for use by the first
network application on the first OS platform to a format for
use by the second network application on the second OS
platform. After packaging the message, the processor may
transmit the packaged data from the first OS platform to the
second network application. For example, as noted with
respect to the embodiment of FIG. 1, a CS 120 may receive
a message from a network application 102a-102¢, package
it into a proper message format, and then call a communi-
cations platform 114 or 116 to send the message to its
destination.

In some embodiments, a first OS platform may be the
same as a second OS platform. In other embodiments, a first
OS platform may be different than a second OS platform.
According to some embodiments, OS platforms may include
OS 2200 OS Platforms, Microsoft Windows OS Platforms,
OS X OS Platforms, a combination of the above, or any
other OS Platform now known or later developed within the
operating system arts.

FIG. 4 is a flow chart illustrating a method for maintaining
ownership of sessions by applications according to one
embodiment of the disclosure. It is noted that embodiments
of method 400 may be implemented in accordance with the
systems and embodiments described herein with respect to
FIGS. 1-2 and FIG. 8. For example, embodiments of method
400 may be implemented by a computing system that
includes at least a network application, a CS, and a com-
munications platform as illustrated in FIGS. 1-2. In some
embodiments, the computing system may be a processor, a
server, or a combination of processors and servers, such as
a network of processors and servers, and may include one or
more components illustrated in FIGS. 1-2 and FIG. 8. In
general, embodiments of method 400 may be implemented
by other similar systems without deviating from this disclo-
sure so long as the systems, whether directly or indirectly,
support the operations as described herein.

Specifically, method 400 includes, at block 402, obtain-
ing, by a processor, such as a processor on which a CS
operates, a communication session table, wherein the com-
munication session table may include a data structure with
information used to establish and maintain a communication
session between network applications. In some embodi-
ments, obtaining a communication session table may include
receiving a request to establish a communication session,
wherein the request includes the session table. In another
embodiment, obtaining a communication session table may
include creating the session table, such as when a CS
receives a message from the communications platform indi-
cating a request from a remote network application for a
communication connection with a network application.

US 9,454,413 Bl

15

Method 400 includes, at block 404, determining, by the
processor, if an activity table exists. In some embodiments,
an activity table, which may also be referred to as an
execution thread, may include a list of operations or instruc-
tions scheduled for execution on a computing system. When
an activity table is determined to not exist, the processor
executing the CS may create an activity table. In some
embodiments, when an activity table is created, the created
activity table may also be registered for termination notifi-
cation so that the activity table can be terminated when a
determination is made by the computing system on which
the CS executes that the activity table should be terminated.

At block 406, method 400 includes determining, by the
processor, when an activity table is determined to exist, if the
session table is linked to the activity table or to another
activity table. In other words, when an activity table is
determined to exist, either because the activity table was
already pre-existing or because the activity table was
recently created, a determination may be made as to whether
or not the obtained session table is linked (i.e., assigned) to
the activity table or to another activity table.

Method 400 includes, at block 408, linking, by the pro-
cessor, the session table to the activity table when the
activity table is determined to exist, the session table is
determined to not already be linked to the activity table,
and/or the session table is referenced by the activity table.
When the session table is determined to be linked to another
activity table, the processor within the computing system on
which the CS executes may proceed to execute operations to
link the session table to the activity table instead of the other
activity table to which it is currently linked. For example, in
some embodiments, when the session table is determined to
be linked to another activity table, a processor may be
configured to perform the steps of stopping an un-owned
session timer associated with the session table if one exists,
removing the link between the session table and the other
activity table, and linking the session table to the activity
table. In some embodiments, when the session table is
determined to not be linked to an activity table, the com-
puting system may start an un-owned session timer. When
the timer expires, the session may be aborted if the session
is valid, and no action may be taken if the session is not
valid. At block 410, method 400 includes performing, by the
processor, a computer instruction requested by a user on the
communication session identified in the session table when
the activity table exists and the session table is linked to the
activity table.

FIGS. 4B and 4C provide illustrations of embodiments of
the method disclosed in FIG. 4. In particular, FIG. 4B is a
flow chart illustrating process flows which may be imple-
mented as part of a method for maintaining ownership of
sessions by applications according to one embodiment of the
disclosure, and FIG. 4C is another flow chart illustrating
process flows which may be implemented as part of a
method for maintaining ownership of sessions by applica-
tions according to one embodiment of the disclosure.

FIG. 5 is a flow chart illustrating a method for avoiding
the orphaning of communication sessions when activities are
terminated according to one embodiment of the disclosure.
In particular, the embodiment illustrated in FIG. 5 may
address the problem that arises when an application orphans
a session, in which the application may not close associated
sessions properly or the application may leave a session in
a state where an application thread appears to not own it. It
is noted that embodiments of method 500 may be imple-
mented in accordance with the systems and embodiments
described herein with respect to FIGS. 1-2 and FIG. 8. For

10

15

20

25

30

35

40

45

50

55

60

65

16

example, embodiments of method 500 may be implemented
by a computing system that includes at least a network
application, a CS, and a communications platform as illus-
trated in FIGS. 1-2. In some embodiments, the computing
system may be a processor, a server, or a combination of
processors and servers, such as a network of processors and
servers, and may include one or more components illustrated
in FIGS. 1-2 and FIG. 8. In general, embodiments of method
500 may be implemented by other similar systems without
deviating from this disclosure so long as the systems,
whether directly or indirectly, support the operations as
described herein.

Specifically, method 500 includes, at block 502, identi-
fying, by the processor, one or more communication session
tables linked to an activity table. Method 500 includes, at
block 504, detecting, by the processor, termination of the
activity table prior to the one or more session tables deter-
mined to be linked to the activity table being linked to other
activity tables or being terminated. For example, the com-
puting system on which a CS executes may detect that a call
to a close or abort interface of the CS has been called
indicating that termination of an activity table has been
initiated. In some embodiments, a computing system may
mark (flag) the activity table as inactive upon detecting
termination of the activity table and determining that there
is not one or more sessions linked to the activity table.

At block 506, method 500 includes determining, by the
processor, whether a first session table of the one or more
session tables determined to be linked to the terminated
activity corresponds to a listen session or a standard com-
munication session. In some embodiments, a listen session
may be a session created in response to a call to a Listen or
Acceptinterface of a CS, whereas a standard communication
session may be a communication session established or
opened when the CS receives a request from a remote
network application requesting communication with another
network application associated with the CS. Method 500
includes, at block 508, aborting the standard communication
session, freeing resources allocated to the communication
session, and removing the link between the first session table
and the activity table when the first session table is deter-
mined to correspond a standard communication session. In
contrast, when the first session table is determined to cor-
respond to a listen session, the computing system may
perform the steps of aborting the listen session, freeing
resources allocated to the listen session, closing the listen
session, and removing the link between the first session table
and the activity table.

In some embodiments, for each session table in addition
to the first session table of the one or more session tables
determined to be linked to the terminated activity, the
computing system may be configured to perform the step of
determining whether the additional session table of the one
or more session tables determined to be linked to the
terminated activity corresponds to a listen session or a
standard communication session. In another embodiment,
for each session table in addition to the first session table of
the one or more session tables determined to be linked to the
terminated activity, the computing system may also be
configured to perform the step of aborting the additional
standard communication session, freeing resources allocated
to the additional communication session, and removing the
link between the additional session table and the activity
table when the additional session table is determined to
correspond a standard communication session.

FIG. 5B is a flow chart illustrating process flows which
may be implemented as part of a method for avoiding the

US 9,454,413 Bl

17

orphaning of communication sessions when activities are
terminated according to one embodiment of the disclosure.
However, one of skill in the art will readily recognize that
other embodiments illustrating aspects of method 500 may
exist and which do no depart from this disclosure.

FIG. 6 is a flow chart illustrating a method for accessing
data using authentication credentials different than the
authentication credentials associated with a user that is
requesting access to the data according to one embodiment
of the disclosure. It is noted that embodiments of method
600 may be implemented in accordance with the systems
and embodiments described herein with respect to FIGS. 1-2
and FIG. 8. For example, embodiments of method 600 may
be implemented by a computing system that includes at least
a network application, a CS, and a communications platform
as illustrated in FIGS. 1-2. In some embodiments, the
computing system may be a processor, a server, or a com-
bination of processors and servers, such as a network of
processors and servers, and may include one or more com-
ponents illustrated in FIGS. 1-2 and FIG. 8. In general,
embodiments of method 600 may be implemented by other
similar systems without deviating from this disclosure so
long as the systems, whether directly or indirectly, support
the operations as described herein.

Specifically, method 600 includes, at block 602, authen-
ticating, by a processor, a first set of authentication creden-
tials associated with a first user during a first call to an API
of a first set of APIs associated with a first network appli-
cation executing in a first OS platform. At block 604, method
600 includes storing, by the processor, the authenticated first
set of authentication credentials on the first OS platform. For
example, as noted with reference to FIG. 2, a first user may
be a user that accesses a network application and causes the
network application to issue a call to an Accept interface of
a CS. As part of the functions executed in response to the call
to the Accept interface, the user’s authentication credentials
may be authenticated. The authenticated credentials may be
stored in memory within or external to the computing
system.

Method 600 includes, at block 606, receiving, by the
processor, via at least one API of the first set of APIs, from
an API of a second set of APIs associated with a second
network application executing in a second OS platform, a
request to access data during a communication session,
wherein a second set of authentication credentials associated
with a second user are associated with the received request.
In some embodiments, the request may be received in
response to input provided to the second network application
by a user associated with the second set of authentication
credentials. For example, the request to access data may be
received from a user accessing a network application from
a remote network application through a user interface on the
remote network application. The user issuing the request to
access data may be different than the user that initiated the
communication session, such as the original user that caused
the network application to call the Accept interface, there-
fore the user issuing the request to access data may be
associated with different authentication credentials than the
user that initiated the communication session with the net-
work application.

At block 608, method 600 includes retrieving, by the
processor, the stored authenticated first set of authentication
credentials, while at block 610, method 600 includes con-
verting, by the processor, the authentication credentials
associated with the request from the second set of authen-
tication credentials to the first set of authentication creden-
tials. For example, the stored authentication credentials that

10

15

20

25

30

35

40

45

50

55

60

65

18

are retrieved may be authentication credentials associated
with the user that initiated the communication session with
the network application. In some embodiments, the step of
converting disclosed at block 610 may include calling an
Impersonate interface of a CS, such as Impersonate interface
250 of CS 210 illustrated in FIG. 2. In some embodiments,
the computing system may issue the call to the Impersonate
interface to switch the authentication credentials associated
with the request from the second set of authentication
credentials to the first set of authentication credentials
because the data for which access is requested may not be
accessible using the second set of authentication credentials.

Method 600 includes, at block 612, accessing, by the
processor, the data using the authenticated first set of authen-
tication credentials. In some embodiments, accessing may
include processing the received request, wherein the request
is associated with the authenticated first set of authentication
credentials when processed.

In some embodiments, after a network application has
finished performing operations that require the original
user’s authentication credentials, the network application
may call another interface, such as an End Impersonate
interface (not shown), to initiate reversion of the authenti-
cation credentials used for subsequent data accesses from
the first set of authentication credentials to the second set of
authentication credentials. In some embodiments, reversion
may be performed so that subsequent data accesses executed
by the first network application are associated with the
second set of authentication credentials instead of the first
set of authentication credentials.

FIG. 7 is a flow chart illustrating a method for authenti-
cating credentials for establishing a secure communication
connection between applications executing on different plat-
forms according to one embodiment of the disclosure. It is
noted that embodiments of method 700 may be implemented
in accordance with the systems and embodiments described
herein with respect to FIGS. 1-2 and FIG. 8. For example,
embodiments of method 700 may be implemented by a
computing system that includes at least a network applica-
tion, a CS, and a communications platform as illustrated in
FIGS. 1-2. In some embodiments, the computing system
may be a processor, a server, or a combination of processors
and servers, such as a network of processors and servers, and
may include one or more components illustrated in FIGS.
1-2 and FIG. 8. In general, embodiments of method 700 may
be implemented by other similar systems without deviating
from this disclosure so long as the systems, whether directly
or indirectly, support the operations as described herein.

Specifically, method 700 includes, at block 702, receiv-
ing, by a processor, a first set of authentication credentials,
wherein the first set of authentication credentials include
credentials for accessing data on a first OS platform, and
wherein the first set of authentication credentials include
either an encrypted user ID and password or first packaged
data generated by a first interface executing on a second OS
platform. For example, in one embodiment, a user may
access a network application executing in a first OS platform
from a remote network application executing in a second OS
platform and the user credentials provided by the user may
be user credentials for accessing data using operations
executable in the first OS platform via the network appli-
cation executing in the first OS platform. In some embodi-
ments, the user credentials may not be associated with the
second OS platform such that the authentication credentials
do not allow the remote network application to access data
on the second OS platform via operations initiated by the
remote network application.

US 9,454,413 Bl

19

At block 704, method 700 includes selecting, by the
processor, a first authentication process from at least two
authentication processes to process the first set of authenti-
cation credentials when the received first set of authentica-
tion credentials includes an encrypted user ID and password.
At block 706, method 700 specifies that processing, by the
processor, the first set of authentication credentials in accor-
dance with the selected first authentication process may
include decrypting the encrypted user ID and password,
authenticating the decrypted user ID and password with an
authentication and session initiation subsystem (ASIS)
executing on the first OS platform, and storing the authen-
ticated user ID. In some embodiments, processing the first
set of authentication credentials in accordance with the
selected first authentication process may establish a secure
communication connection between an application execut-
ing on the first OS platform, such as a local network
application, and an application executing on the second OS
platform, such as a remote network application. In some
embodiments, a network application executing on the first
OS platform may use the stored authenticated user ID to
access data within the first OS platform.

In some embodiments, the computing system on which a
CS executes may select a second authentication process
from the at least two authentication processes to process the
first set of authentication credentials when the received first
set of authentication credentials comprises the first packaged
data. According to an embodiment, processing the first set of
authentication credentials in accordance with the selected
second authentication process may include authenticating
the first packaged data with the ASIS and transmitting to an
application executing on the second OS platform second
packaged data generated on the first OS platform. Process-
ing the first set of authentication credentials in accordance
with the selected second authentication process may also
include receiving third packaged data generated by the first
interface executing on the second OS platform in response
to validation of the second packaged data on the second OS
platform, authenticating the third packaged data with the
ASIS, and storing the authenticated third package data.

According to some embodiments, while authenticating
potential users, if the computing system detects an invalid
authentication attempt, such as an invalid user ID or pass-
word combination, the computing system may log the event
and save the Internet Protocol (IP) address from which the
request originated in a table of failed addresses. Each
subsequent failed authentication may increment the number
of invalid attempts associated with an IP address. In some
embodiments, if a predetermined number of invalid attempts
occur from a single IP address, the computing system may
ignore future attempts to authenticate the user, such as by not
evaluating or authenticating the credentials being supplied.
According to an embodiment, invalid attempts to authenti-
cate may result in aborted connections.

In some embodiments, a computing system may also log
the time of the first failed attempt such that after a prede-
termined amount of time has passed the IP address associ-
ated with the failed attempts may be cleared of any failures
so that future authentication attempts may be evaluated for
authentication.

The schematic flow chart diagrams of FIGS. 3-7 are
generally set forth as a logical flow chart diagrams. As such,
the depicted order and labeled steps are indicative of one
embodiment of the disclosed methods. Other steps and
methods may be conceived that are equivalent in function,
logic, or effect to one or more steps, or portions thereof, of
the illustrated methods. Additionally, the format and sym-

20

30

40

45

60

20

bols employed are provided to explain the logical steps of
the methods and are understood not to limit the scope of the
methods. Although various arrow types and line types may
be employed in the flow chart diagrams, they are understood
not to limit the scope of the corresponding methods. Indeed,
some arrows or other connectors may be used to indicate
only the logical flow of the methods. For instance, an arrow
may indicate a waiting or monitoring period of unspecified
duration between enumerated steps of the depicted methods.
Additionally, the order in which a particular method occurs
may or may not strictly adhere to the order of the corre-
sponding steps shown.

FIG. 8 illustrates a computer system 800 adapted accord-
ing to certain embodiments of a server and/or a user inter-
face device. The central processing unit (“CPU”) 802 is
coupled to the system bus 804. The CPU 802 may be a
general purpose CPU or microprocessor, graphics process-
ing unit (“GPU”), and/or microcontroller. The present
embodiments are not restricted by the architecture of the
CPU 802 so long as the CPU 802, whether directly or
indirectly, supports the operations as described herein. The
CPU 802 may execute the various logical instructions
according to the present embodiments.

The computer system 800 may also include random
access memory (RAM) 808, which may be synchronous
RAM (SRAM), dynamic RAM (DRAM), synchronous
dynamic RAM (SDRAM), or the like. The computer system
800 may utilize RAM 808 to store the various data structures
used by a software application. The computer system 800
may also include read only memory (ROM) 806 which may
be PROM, EPROM, EEPROM, optical storage, or the like.
The ROM may store configuration information for booting
the computer system 800. The RAM 808 and the ROM 806
hold user and system data, and both the RAM 808 and the
ROM 806 may be randomly accessed.

The computer system 800 may also include an input/
output (I/0) adapter 810, a communications adapter 814, a
user interface adapter 816, and a display adapter 822. The
1/0 adapter 810 and/or the user interface adapter 816 may,
in certain embodiments, enable a user to interact with the
computer system 800. In a further embodiment, the display
adapter 822 may display a graphical user interface (GUI)
associated with a software or web-based application on a
display device 824, such as a monitor or touch screen.

The I/O adapter 810 may couple one or more storage
devices 812, such as one or more of a hard drive, a solid state
storage device, a flash drive, a compact disc (CD) drive, a
floppy disk drive, and a tape drive, to the computer system
800. According to one embodiment, the data storage 812
may be a separate server coupled to the computer system
800 through a network connection to the I/O adapter 810.
The communications adapter 814 may be adapted to couple
the computer system 800 to a network, which may be one or
more of a LAN, WAN, and/or the Internet. The user interface
adapter 816 couples user input devices, such as a keyboard
820, a pointing device 818, and/or a touch screen (not
shown) to the computer system 800. The display adapter 822
may be driven by the CPU 802 to control the display on the
display device 824. Any of the devices 802-822 may be
physical and/or logical.

The applications of the present disclosure are not limited
to the architecture of computer system 800. Rather the
computer system 800 is provided as an example of one type
of computing device that may be adapted to perform the
functions of a server and/or the user interface device 810.
For example, any suitable processor-based device may be
utilized including, without limitation, personal data assis-

US 9,454,413 Bl

21

tants (PDAs), tablet computers, smartphones, computer
game consoles, and multi-processor servers. Moreover, the
systems and methods of the present disclosure may be
implemented on application specific integrated circuits
(ASIC), very large scale integrated (VLSI) circuits, or other
circuitry. In fact, persons of ordinary skill in the art may
utilize any number of suitable structures capable of execut-
ing logical operations according to the described embodi-
ments. For example, in some embodiments, aspects of the
computer system 800 may be virtualized for access by
multiple users and/or applications.

If implemented in firmware and/or software, the functions
described above may be stored as one or more instructions
or code on a computer-readable medium. Examples include
non-transitory computer-readable media encoded with a data
structure and computer-readable media encoded with a
computer program. Computer-readable media includes
physical computer storage media. A storage medium may be
any available medium that can be accessed by a computer.
By way of example, and not limitation, such computer-
readable media can comprise RAM, ROM, EEPROM, CD-
ROM or other optical disk storage, magnetic disk storage or
other magnetic storage devices, or any other medium that
can be used to store desired program code in the form of
instructions or data structures and that can be accessed by a
computer. Disk and disc includes compact discs (CD), laser
discs, optical discs, digital versatile discs (DVD), floppy
disks and blu-ray discs. Generally, disks reproduce data
magnetically, and discs reproduce data optically. Combina-
tions of the above should also be included within the scope
of computer-readable media.

In addition to storage on computer-readable medium,
instructions and/or data may be provided as signals on
transmission media included in a communication apparatus.
For example, a communication apparatus may include a
transceiver having signals indicative of instructions and
data. The instructions and data may be configured to cause
one or more processors to implement the functions outlined
in the claims.

Although the present disclosure and its advantages have
been described in detail, it should be understood that various
changes, substitutions and alterations can be made herein
without departing from the spirit and scope of the disclosure
as defined by the appended claims. Moreover, the scope of
the present application is not intended to be limited to the
particular embodiments of the process, machine, manufac-
ture, composition of matter, means, methods and steps
described in the specification. As one of ordinary skill in the
art will readily appreciate from the present invention, dis-
closure, machines, manufacture, compositions of matter,
means, methods, or steps, presently existing or later to be
developed that perform substantially the same function or
achieve substantially the same result as the corresponding
embodiments described herein may be utilized according to
the present disclosure. Accordingly, the appended claims are
intended to include within their scope such processes,
machines, manufacture, compositions of matter, means,
methods, or steps.

What is claimed is:
1. A method for handling communications between net-
work applications, comprising:

associating, by a processor, a first set of application
interfaces (APIs) with a first network application
executing in a first operating system (OS) platform;

receiving, by the processor, via at least one API of the first
set of APIs, a message from an API of a second set of

10

25

30

40

45

60

22

APIs associated with a second network application
executing in a second OS platform;

packaging, by the processor, using at least one API of the
first set of APIs, the received message, wherein pack-
aging comprises converting the message from a format
configured for use by the second network application
on the second OS platform to a format for use by the
first network application on the first OS platform; and

processing, by the processor, the packaged message with
the first network application on the first OS platform.

2. The method of claim 1, wherein associating comprises
calling a first API of the first set of APIs to establish a
relationship between the first set of APIs and the first
network application and to indicate to a communications
platform that the first set of APIs are ready to process
inbound network connection requests for the first network
application.

3. The method of claim 1, wherein the second OS plat-
form is different than the first OS platform.

4. The method of claim 1, wherein the first OS platform
is an OS 2200 platform and the second OS platform is a
Microsoft Windows platform.

5. The method of claim 1, wherein the received message
comprises at least one instruction to be processed by the first
network application executing on the first OS platform, and
wherein the at least one instruction was input by a user using
at least one API associated with the second network appli-
cation executing on the second OS platform.

6. The method of claim 1, further comprising:

packaging, by the processor, using at least one API of the
first set of APIs, data on the first OS platform obtained
with the first network application, wherein packaging
comprises converting the data from a format configured
for use by the first network application on the first OS
platform to a format for use by the second network
application on the second OS platform; and

transmitting the packaged data from the first OS platform
to the second network application.
7. A computer program product, comprising:
a non-transitory computer readable medium comprising
instructions which, when executed by a processor of a
computer system, cause the processor to perform the
steps of:
associating a first set of application interfaces (APIs)
with a first network application executing in a first
operating system (OS) platform;

receiving via at least one API of the first set of APIs, a
message from an API of a second set of APIs
associated with a second network application execut-
ing in a second OS platform;

packaging using at least one API of the first set of APIs,
the received message, wherein packaging comprises
converting the message from a format configured for
use by the second network application on the second
OS platform to a format for use by the first network
application on the first OS platform; and

processing the packaged message with the first network

application on the first OS platform.

8. The computer program product of claim 7, wherein
associating comprises calling a first API of the first set of
APIs to establish a relationship between the first set of APIs
and the first network application and to indicate to a com-
munications platform that the first set of APIs are ready to
process inbound network connection requests for the first
network application.

9. The computer program product of claim 7, wherein the
second OS platform is different than the first OS platform.

US 9,454,413 Bl

23

10. The computer program product of claim 7, wherein
the first OS platform is an OS 2200 platform and the second
OS platform is a Microsoft Windows platform.

11. The computer program product of claim 7, wherein the
received message comprises at least one instruction to be
processed by the first network application executing on the
first OS platform, and wherein the at least one instruction
was input by a user using at least one AP associated with the
second network application executing on the second OS
platform.

12. The computer program product of claim 7, wherein
the medium further comprises instructions which cause the
processor to perform the steps of:

packaging, using at least one API of the first set of APIs,

data on the first OS platform obtained with the first
network application, wherein packaging comprises
converting the data from a format configured for use by
the first network application on the first OS platform to
a format for use by the second network application on
the second OS platform; and

transmitting the packaged data from the first OS platform

to the second network application.

13. An apparatus, comprising:

a memory; and

aprocessor coupled to the memory, wherein the processor

is further configured to perform the steps of:

associating a first set of application interfaces (APIs)
with a first network application executing in a first
operating system (OS) platform;

receiving via at least one API of the first set of APIs, a
message from an API of a second set of APIs
associated with a second network application execut-
ing in a second OS platform;

packaging using at least one API of the first set of APIs,
the received message, wherein packaging comprises
converting the message from a format configured for

10

15

20

25

30

35

24

use by the second network application on the second
OS platform to a format for use by the first network
application on the first OS platform; and

processing the packaged message with the first network
application on the first OS platform.

14. The apparatus of claim 13, wherein associating com-
prises calling a first API of the first set of APIs to establish
a relationship between the first set of APIs and the first
network application and to indicate to a communications
platform that the first set of APIs are ready to process
inbound network connection requests for the first network
application.

15. The apparatus of claim 13, wherein the second OS
platform is different than the first OS platform.

16. The apparatus of claim 13, wherein the first OS
platform is an OS 2200 platform and the second OS platform
is a Microsoft Windows platform.

17. The apparatus of claim 13, wherein the received
message comprises at least one instruction to be processed
by the first network application executing on the first OS
platform, and wherein the at least one instruction was input
by a user using at least one API associated with the second
network application executing on the second OS platform.

18. The apparatus of claim 13, wherein the processor is
further configured to perform the steps of:

packaging, using at least one API of the first set of APIs,

data on the first OS platform obtained with the first
network application, wherein packaging comprises
converting the data from a format configured for use by
the first network application on the first OS platform to
a format for use by the second network application on
the second OS platform; and

transmitting the packaged data from the first OS platform

to the second network application.

#* #* #* #* #*

